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Abstract

We show that under certain conditions, semisimplicity of the Banach algebra
A implies that of A", where A" is the second dual of A endowed with either

Arens product.
1. Introduction

Let A be a Banach algebra. It is well-known, on the second dual
space A" of A, there are two multiplications, called the first and second
Arens products, which make A" into a Banach algebra (see [1], [4]). By
definition, the first Arens product [0 on A" is induced by the left
A-module structure on A. That is, for each ®, ¥ € A", f € A’, and

a, b e A, we have

(@Y, f)=(D,¥-f), (¥Y-f.a)=(¥,f-a), (f-a, b)={f, adb).
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Similarly, the second Arens product ¢ on A" is defined by considering

A as a right A-module. The Banach algebra A is said to be Arens
regular, if ®O¥ = ®O¥ on the whole of A"

The Jacobson radical J(A) of A is the intersection of the primitive
ideals of A. Note that J(A) is the intersection of the maximal modular
left ideals of A by Theorem 1.5.2 of [4], and A is called semisimple if
J(A) = {0}.

The strong radical R(A) of A is the intersection of the maximal
modular ideals of A, and A is called strongly semisimple if R(A) = {0}.
For example, let A = L(E), where E is an infinite dimensional linear

space. Then A is not strongly semisimple, but J(A) = {0}.
A nonzero linear functional ¢ : A — C is said to be multiplicative if

o(ab) = o(a)p(d) (a, b e A).

We denote by 91(A), the set of all multiplicative linear functional on A.

If A is commutative, then by Theorem 5, Section 16 of [2], the maximal
modular ideals of A are the kernels of the multiplicative linear
functionals. Therefore, in this case, J(A)= R(A), and both of them

coincide with
rad(A) = N{ker ¢ : ¢ € M(A)}.
Note that 9M(A), is a locally compact Hausdorff space, and it is compact
if A 1is unital [2].
A bounded net (e, ), 7 in A is a bounded approximate identity (BAI
for short) if, for each a e A, ae, > a and e,a »> a. An element

@y € A" is called mixed unit, if it is a right unit for (A", 0) and a left

unit for (A’, ¢). It is well-known that an element ®; € A" is a mixed

unit if and only if it is a weak™ cluster point of some BAI (e, ),.; in A

[2].
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Let A be a Banach algebra with BAI. We say that A’ factors on the
leftif A" = A'- A, and factors on the rightif 4" = A4 -.A4" [8].

Throughout the paper, we identify an element of a Banach space X
with its canonical image in X". Also for closed linear subspace E of X, we
write E+ = {f e X' : flg =0}.

Recall that all Banach algebras are assumed to be over the complex
field C.

The proof of the following result contained in [11], see also [7].

Theorem 1.1. Let G be a locally compact group. If G is not discrete,
then neither L}(G) nor M(G) is Arens regular.

Lemma 1.2. Let A be a commutative Banach algebra. Then A is

Arens regular if and only if A" is commutative.

Proof. This is straightforward.

2. Semisimplicity of A"

It is well-known that every C*-algebra A is Arens regular and
semisimple. Now, since the second dual of each C™-algebra is also a
C™ -algebra [4], so it is Arens regular and semisimple. But, in general
case, this is fails for Banach algebras. This fact that when Arens
regularity of A implies that of A" have been studied in [9]. In this note,
we investigate the semisimplicity of A", and prove that under special

hypotheses semisimplicity passes from A to its second dual.

Theorem 2.1. Let A be a Banach algebra with BAI, which need not
to be commutative. If J(A", O) = {0}, then A’ factors on the left.

Proof. Suppose A" # A'- A, and let f € A’, which is not in A’ - A.
Since A'- A is a closed subspace of A’, by Hahn-Banach theorem, there
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exist a nonzero element ® € A" such that (®, f) =1 and (@, A'- A) = 0.

Therefore ® e (A'- A)" and so (A'- A)" = {0}, which is contradicts of
semisimplicity of A". Thus, A’ factors on the left.

Note that if J(A", O) = {0}, then A’ may not factors on the right.
For example, let A = K(cy), the operator algebra of all compact linear
operators on the sequence space cy. Then J(A", O) = {0}, by Example 6.2

of [5], but A’ does not factors on the right, by Example 2.5 of [8]. In fact,
A’ factors on the right, if J(A", ¢) = {0}.

As a consequence of Theorem 2.1, we have the next result which was

first proved by Civin and Yood in [3].

Corollary 2.2. Suppose A = L}G), for locally compact abelian
group G. If G is not discrete, then A" is not commutative and is not
semisimple.

Corollary 2.3. Let G be a locally compact abelian group and
A = M(G). If G is not discrete, then A" is not commutative and is not

semisimple.
Proof. It follows from Lemma 1.2 that A" is not commutative, and
since L}(G) is anidealin A", so A" is not semisimple.

Since the second dual of every Arens regular Banach algebra with
BAI, is unital [6], so the following result deduce of Proposition 2.3.6 of [4].

Proposition 2.4. Let A be a commutative Arens regular Banach

algebra with BAI. Then 9M(A") is compact and non-empty.

In general, the second dual of semisimple Banach algebra A may not
be semisimple. For example, let A = {* (N), with pointwise product. Then

A 1s commutative and semisimple Banach algebra. By Example 4.1 of
[6], A" i1s commutative, but it is not semisimple. Note that A is Arens
regular by Lemma 1.2, also it is not reflexive but satisfies A"TIA" < A,

which shows that A is an ideal in its second dual.
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The next result, which is the main one in the paper, provides a

criterion for semisimplicity of the second dual.

Theorem 2.5. Let A be a commutative semisimple Banach algebra
with a BAIL If A is Arens regular and is an ideal in the second dual, then

A" is commutative and semisimple.

Proof. Let ® and ¥ be arbitrary elements of A" such that ® = P.
So, there exist g € A’ such that ®(g) # ¥(g). By hypotheses A’ factors,
therefore g =f-a for some fe A" and a e A Thus, we have
®(f-a) = ¥Y(f-a), and so a-® # a-¥. Since A is semisimple, M(A)
separate the point of A by Corollary 7, Section 17 of [2], so there exist
¢ € M(A) such that

ola - @) = ¢la - ¥).

Clearly ¢, the second adjoin of ¢ is multiplicative linear functional on

A" and since A is an ideal in the second dual, we have
¢'(a- @)% ¢'(a-¥).
It follows that ¢"(®) # ¢"(¥), because ker ¢" is an ideal of A". Thus,
M(A") separate the point of A", thatis A" is semisimple.
The below example shows that the hypothesis that A is Arens
regular in Theorem 2.5 is essential.

Example 2.6. Suppose G is compact and abelian group, which is not
discrete, and let A = L' (G) be its group algebra. Then A is a

commutative and semisimple Banach algebra with BAI. Since G is
compact, A is an ideal in the second dual, as is well-known [10]. By
Theorem 1.1, A is not Arens regular. However, A" is not commutative

and is not semisimple.
We recalled that the spectral radius of element a € A is denoted by

r(a), and is defined by r(a) = limn||an||%.
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Theorem 2.7. Suppose A is a commutative and semisimple Banach
algebra, which is complete in its spectral radius norm. Then A" is

commutative and semisimple.
Proof. See [3].

Corollary 2.8. Let A be a commutative semisimple Banach algebra,

which is complete in its spectral radius norm. Then A is Arens regular.

In general, semisimplicity does not inherits by onto homomorphism.
For example, let A be the Banach algebra C™([0, 1]) of all m times
continuously differentiable complex-valued functions on [0, 1] with the

norm

I = Y 2 supl ()
k=0

Then A is commutative and semisimple. The set
I={feA:f0)=/(0) =0},
is a closed ideal of A. If we define a(x) = x, then we see that o? e I

and so (o + I)? = a? + I = 0. Therefore,
1
rio+ I) = lim,|(a + I)"» = 0.

Thus, a+1 e Rad(% ), but o+ I #0, which implies (%) is not
semisimple.
The proof of the following result is straightforward and we omit it.

Theorem 2.9. Let ¢ : A — B be an onto homomorphism between
commutative Banach algebras. Suppose for each f; € M(A), there exists

fo € M(B) such that

faco="1.

Then semisimplicity of A implies that of B.
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