SEMISIMPLICITY OF THE SECOND DUAL OF BANACH ALGEBRAS

A. ZIVARI-KAZEMPOUR

Department of Mathematics Ayatollah Borujerdi University Borujerd Iran e-mail: zivari@abru.ac.ir

Abstract

We show that under certain conditions, semisimplicity of the Banach algebra \mathcal{A} implies that of \mathcal{A}'' , where \mathcal{A}'' is the second dual of \mathcal{A} endowed with either Arens product.

1. Introduction

Let \mathcal{A} be a Banach algebra. It is well-known, on the second dual space \mathcal{A}'' of \mathcal{A} , there are two multiplications, called the first and second Arens products, which make \mathcal{A}'' into a Banach algebra (see [1], [4]). By definition, the first Arens product \Box on \mathcal{A}'' is induced by the left \mathcal{A} -module structure on \mathcal{A} . That is, for each $\Phi, \Psi \in \mathcal{A}'', f \in \mathcal{A}'$, and $a, b \in \mathcal{A}$, we have

$$\langle \Phi \Box \Psi, f \rangle = \langle \Phi, \Psi \cdot f \rangle, \quad \langle \Psi \cdot f, a \rangle = \langle \Psi, f \cdot a \rangle, \quad \langle f \cdot a, b \rangle = \langle f, ab \rangle.$$

Received August 19, 2013

© 2013 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 46H20, 46H25.

Keywords and phrases: Arens regular, semisimple, second dual, multiplicative linear functional.

Similarly, the second Arens product \diamond on \mathcal{A}'' is defined by considering \mathcal{A} as a right \mathcal{A} -module. The Banach algebra \mathcal{A} is said to be Arens regular, if $\Phi \Box \Psi = \Phi \diamond \Psi$ on the whole of \mathcal{A}'' .

The Jacobson radical J(A) of A is the intersection of the primitive ideals of A. Note that J(A) is the intersection of the maximal modular left ideals of A by Theorem 1.5.2 of [4], and A is called *semisimple* if $J(A) = \{0\}$.

The strong radical $R(\mathcal{A})$ of \mathcal{A} is the intersection of the maximal modular ideals of \mathcal{A} , and \mathcal{A} is called *strongly semisimple* if $R(\mathcal{A}) = \{0\}$. For example, let $\mathcal{A} = \mathcal{L}(E)$, where E is an infinite dimensional linear space. Then \mathcal{A} is not strongly semisimple, but $J(\mathcal{A}) = \{0\}$.

A nonzero linear functional $\varphi : \mathcal{A} \to \mathbb{C}$ is said to be *multiplicative* if

$$\varphi(ab) = \varphi(a)\varphi(b) \quad (a, b \in \mathcal{A})$$

We denote by $\mathfrak{M}(\mathcal{A})$, the set of all multiplicative linear functional on \mathcal{A} . If \mathcal{A} is commutative, then by Theorem 5, Section 16 of [2], the maximal modular ideals of \mathcal{A} are the kernels of the multiplicative linear functionals. Therefore, in this case, $J(\mathcal{A}) = R(\mathcal{A})$, and both of them coincide with

$$rad(\mathcal{A}) = \bigcap \{ \ker \varphi : \varphi \in \mathfrak{M}(\mathcal{A}) \}.$$

Note that $\mathfrak{M}(\mathcal{A})$, is a locally compact Hausdorff space, and it is compact if \mathcal{A} is unital [2].

A bounded net $(e_{\alpha})_{\alpha \in I}$ in \mathcal{A} is a bounded approximate identity (BAI for short) if, for each $a \in \mathcal{A}$, $ae_{\alpha} \to a$ and $e_{\alpha}a \to a$. An element $\Phi_0 \in \mathcal{A}''$ is called *mixed unit*, if it is a right unit for (\mathcal{A}'', \Box) and a left unit for $(\mathcal{A}'', \diamond)$. It is well-known that an element $\Phi_0 \in \mathcal{A}''$ is a mixed unit if and only if it is a weak^{*} cluster point of some BAI $(e_{\alpha})_{\alpha \in I}$ in \mathcal{A} [2]. Let \mathcal{A} be a Banach algebra with BAI. We say that \mathcal{A}' factors on the left if $\mathcal{A}' = \mathcal{A}' \cdot \mathcal{A}$, and factors on the right if $\mathcal{A}' = \mathcal{A} \cdot \mathcal{A}'$ [8].

Throughout the paper, we identify an element of a Banach space X with its canonical image in X". Also for closed linear subspace E of X, we write $E^{\perp} = \{f \in X' : f|_E = 0\}.$

Recall that all Banach algebras are assumed to be over the complex field $\mathbb{C}.$

The proof of the following result contained in [11], see also [7].

Theorem 1.1. Let G be a locally compact group. If G is not discrete, then neither $L^1(G)$ nor M(G) is Arens regular.

Lemma 1.2. Let \mathcal{A} be a commutative Banach algebra. Then \mathcal{A} is Arens regular if and only if \mathcal{A}'' is commutative.

Proof. This is straightforward.

2. Semisimplicity of \mathcal{A}''

It is well-known that every C^* -algebra \mathcal{A} is Arens regular and semisimple. Now, since the second dual of each C^* -algebra is also a C^* -algebra [4], so it is Arens regular and semisimple. But, in general case, this is fails for Banach algebras. This fact that when Arens regularity of \mathcal{A} implies that of \mathcal{A}'' have been studied in [9]. In this note, we investigate the semisimplicity of \mathcal{A}'' , and prove that under special hypotheses semisimplicity passes from \mathcal{A} to its second dual.

Theorem 2.1. Let \mathcal{A} be a Banach algebra with BAI, which need not to be commutative. If $J(\mathcal{A}'', \Box) = \{0\}$, then \mathcal{A}' factors on the left.

Proof. Suppose $\mathcal{A}' \neq \mathcal{A}' \cdot \mathcal{A}$, and let $f \in \mathcal{A}'$, which is not in $\mathcal{A}' \cdot \mathcal{A}$. Since $\mathcal{A}' \cdot \mathcal{A}$ is a closed subspace of \mathcal{A}' , by Hahn-Banach theorem, there exist a nonzero element $\Phi \in \mathcal{A}''$ such that $\langle \Phi, f \rangle = 1$ and $\langle \Phi, \mathcal{A}' \cdot \mathcal{A} \rangle = 0$. Therefore $\Phi \in (\mathcal{A}' \cdot \mathcal{A})^{\perp}$ and so $(\mathcal{A}' \cdot \mathcal{A})^{\perp} \neq \{0\}$, which is contradicts of semisimplicity of \mathcal{A}'' . Thus, \mathcal{A}' factors on the left.

Note that if $J(\mathcal{A}'', \Box) = \{0\}$, then \mathcal{A}' may not factors on the right. For example, let $\mathcal{A} = \mathcal{K}(c_0)$, the operator algebra of all compact linear operators on the sequence space c_0 . Then $J(\mathcal{A}'', \Box) = \{0\}$, by Example 6.2 of [5], but \mathcal{A}' does not factors on the right, by Example 2.5 of [8]. In fact, \mathcal{A}' factors on the right, if $J(\mathcal{A}'', \diamond) = \{0\}$.

As a consequence of Theorem 2.1, we have the next result which was first proved by Civin and Yood in [3].

Corollary 2.2. Suppose $\mathcal{A} = L^1(G)$, for locally compact abelian group G. If G is not discrete, then \mathcal{A}'' is not commutative and is not semisimple.

Corollary 2.3. Let G be a locally compact abelian group and $\mathcal{A} = M(G)$. If G is not discrete, then \mathcal{A}'' is not commutative and is not semisimple.

Proof. It follows from Lemma 1.2 that \mathcal{A}'' is not commutative, and since $L^1(G)^{''}$ is an ideal in \mathcal{A}'' , so \mathcal{A}'' is not semisimple.

Since the second dual of every Arens regular Banach algebra with BAI, is unital [6], so the following result deduce of Proposition 2.3.6 of [4].

Proposition 2.4. Let \mathcal{A} be a commutative Arens regular Banach algebra with BAI. Then $\mathfrak{M}(\mathcal{A}'')$ is compact and non-empty.

In general, the second dual of semisimple Banach algebra \mathcal{A} may not be semisimple. For example, let $\mathcal{A} = l^1(\mathbb{N})$, with pointwise product. Then \mathcal{A} is commutative and semisimple Banach algebra. By Example 4.1 of [5], \mathcal{A}'' is commutative, but it is not semisimple. Note that \mathcal{A} is Arens regular by Lemma 1.2, also it is not reflexive but satisfies $\mathcal{A}'' \Box \mathcal{A}'' \subseteq \mathcal{A}$, which shows that \mathcal{A} is an ideal in its second dual. The next result, which is the main one in the paper, provides a criterion for semisimplicity of the second dual.

Theorem 2.5. Let \mathcal{A} be a commutative semisimple Banach algebra with a BAI. If \mathcal{A} is Arens regular and is an ideal in the second dual, then \mathcal{A}'' is commutative and semisimple.

Proof. Let Φ and Ψ be arbitrary elements of \mathcal{A}'' such that $\Phi \neq \Psi$. So, there exist $g \in \mathcal{A}'$ such that $\Phi(g) \neq \Psi(g)$. By hypotheses \mathcal{A}' factors, therefore $g = f \cdot a$ for some $f \in \mathcal{A}'$ and $a \in \mathcal{A}$. Thus, we have $\Phi(f \cdot a) \neq \Psi(f \cdot a)$, and so $a \cdot \Phi \neq a \cdot \Psi$. Since \mathcal{A} is semisimple, $\mathfrak{M}(\mathcal{A})$ separate the point of \mathcal{A} by Corollary 7, Section 17 of [2], so there exist $\phi \in \mathfrak{M}(\mathcal{A})$ such that

$$\varphi(a \cdot \Phi) \neq \varphi(a \cdot \Psi).$$

Clearly φ'' , the second adjoin of φ is multiplicative linear functional on \mathcal{A}'' , and since \mathcal{A} is an ideal in the second dual, we have

$$\varphi''(a \cdot \Phi) \neq \varphi''(a \cdot \Psi).$$

It follows that $\varphi''(\Phi) \neq \varphi''(\Psi)$, because ker φ'' is an ideal of \mathcal{A}'' . Thus, $\mathfrak{M}(\mathcal{A}'')$ separate the point of \mathcal{A}'' , that is \mathcal{A}'' is semisimple.

The below example shows that the hypothesis that \mathcal{A} is Arens regular in Theorem 2.5 is essential.

Example 2.6. Suppose G is compact and abelian group, which is not discrete, and let $\mathcal{A} = L^{1}(G)$ be its group algebra. Then \mathcal{A} is a commutative and semisimple Banach algebra with BAI. Since G is compact, \mathcal{A} is an ideal in the second dual, as is well-known [10]. By Theorem 1.1, \mathcal{A} is not Arens regular. However, \mathcal{A}'' is not commutative and is not semisimple.

We recalled that the spectral radius of element $a \in \mathcal{A}$ is denoted by r(a), and is defined by $r(a) = \lim_{n \to \infty} \|a^n\|_n^{\frac{1}{n}}$.

Theorem 2.7. Suppose \mathcal{A} is a commutative and semisimple Banach algebra, which is complete in its spectral radius norm. Then \mathcal{A}'' is commutative and semisimple.

Proof. See [3].

Corollary 2.8. Let \mathcal{A} be a commutative semisimple Banach algebra, which is complete in its spectral radius norm. Then \mathcal{A} is Arens regular.

In general, semisimplicity does not inherits by onto homomorphism. For example, let \mathcal{A} be the Banach algebra $C^m([0, 1])$ of all m times continuously differentiable complex-valued functions on [0, 1] with the norm

$$||f|| = \sum_{k=0}^{m} \frac{1}{k!} \sup |f^k(x)|.$$

Then \mathcal{A} is commutative and semisimple. The set

$$I = \{ f \in \mathcal{A} : f(0) = f'(0) = 0 \},\$$

is a closed ideal of \mathcal{A} . If we define $\alpha(x) = x$, then we see that $\alpha^2 \in I$ and so $(\alpha + I)^2 = \alpha^2 + I = 0$. Therefore,

$$r(\alpha + I) = \lim_{n \to \infty} \|(\alpha + I)^n\|_n^{\perp} = 0.$$

Thus, $\alpha + I \in Rad(\frac{A}{I})$, but $\alpha + I \neq 0$, which implies $(\frac{A}{I})$ is not semisimple.

The proof of the following result is straightforward and we omit it.

Theorem 2.9. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be an onto homomorphism between commutative Banach algebras. Suppose for each $f_1 \in \mathfrak{M}(\mathcal{A})$, there exists $f_2 \in \mathfrak{M}(\mathcal{B})$ such that

$$f_2 \circ \varphi = f_1.$$

Then semisimplicity of \mathcal{A} implies that of \mathcal{B} .

References

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [3] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870.
- [4] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, 2000.
- [5] H. G. Dales and A. T. M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177(836) (2005).
- [6] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489-1497.
- [7] C. C. Graham, A B.A.I. proof of the non-Arens regularity of $L^1(G)$, Proc. Amer. Math. Soc. 133 (2004), 163-165.
- [8] A. T. M. Lau and A. Ülger, Topological centre of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
- [9] A. Sahleh and A. Zivari-Kazempour, Arens regularity of certain class of Banach algebras, Abstract and Applied Analysis (2011), Article ID 680952, 6 pages.
- [10] A. Ülger, Arens regularity sometimes implies RNP, Pacific J. Math. 143 (1990), 377-399.
- [11] N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. 24 (1973), 59-62.